七分之二十二是无理数吗

0 2024-01-20 14:00 Mr.xuan 来源:xuanchuanyuan.com

七分之二十二是无理数吗-图1

不是。

分数是不是无理数需要看除后的结果,如果结果是无限循环就是有理数,如果结果是无限不循环就是无理数,七分之二十二,也就是22÷7=3.1428571428571。这个结果是无限循环小数,所以七分之二十二不是无理数,而是有理数。

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,也就是没有长度(“度量”)。

无理数在位置数字系统中表示不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。

数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看作是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

(1)圆周率(π):3.14159 26535 89793 23846 2643383279 50288 41971……(无限不循环)

(2)e是数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.71828(无限不循环)

(3)√2,√5。(无限不循环)

判断一个数是不是无理数,就看它是不是无限的,并且小数后面是不是循环的。

公元前500年,有一位牛人,叫毕达哥拉斯。如果你对这位牛人有点儿陌生,那你一定知道「毕达哥拉斯」定理,那就是「直角三角形中,两直角边的平方和等于斜边的平方」。

在我国,这个定理就是著名的勾股定理。

在毕达哥拉斯的时代,这个定理还有个有趣的名字,叫做「百牛定理」。原因是毕达哥拉斯发现并证明这个定理的时候太兴奋了,传说杀了100头牛来祭祀神明,感谢神明赐给他的灵感。

这位牛人创办了一个数学学派,叫做毕达哥拉斯学派。你可别认为这个学派和现在的什么后现代美术学派是一回事,毕达哥拉斯学派在当时那基本就是个宗教。

比如这个学派中有「不允许吃豆子」、「不允许用铁拨弄火」等奇怪的规定,毕达哥拉斯本人作为「教主」,称呼自己创办的学派为「教团」,他给学生们讲课的时候身穿白色法衣,头顶金冠站在法坛上。

哲学家赫拉克利特这样评价他:「毕达哥拉斯读了大量的书,亲自创造出智慧、博识与妖术。」

那么这个「毕达哥拉斯教团」信奉的神灵是什么呢?——别笑,他们信数字。

教团相信,整数像原子一样,构成了宇宙中的一切,并描述宇宙中的一切。宇宙的一切事物的度量都可用整数或整数的比来表示,除此之外,就再没有什么了。